Link Prediction in a Semi-bipartite Network for Recommendation
نویسندگان
چکیده
There is an increasing trend amongst users to consume information from websites and social media. With the huge influx of content it becomes challenging for the consumers to navigate to topics or articles that interest them. Particularly in health care, the content consumed by a user is controlled by various factors such as demographics and lifestyle. In this paper, we use a semi-bipartite network model to capture the interactions between users and health topics that interest them. We use a supervised link prediction approach to recommend topics to users based on their past reading behavior and contextual data associated to a user such as demographics.
منابع مشابه
Common neighbours and the local-community-paradigm for topological link prediction in bipartite networks
Bipartite networks are powerful descriptions of complex systems characterized by two different classes of nodes and connections allowed only across but notwithin the two classes. Unveiling physical principles, building theories and suggesting physicalmodels to predict bipartite links such as productconsumer connections in recommendation systems or drug–target interactions inmolecular networks c...
متن کاملLink prediction in Foursquare network
Foursquare is an online social network and can be represented with a bipartite network of users and venues. A user-venue pair is connected if a user has checked-in at that venue. In the case of Foursquare, network analysis techniques can be used to enhance the user experience. One such technique is link prediction, which can be used to build a personalized recommendation system of venues. Recom...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملTag Recommendation by Link Prediction Based on Supervised Machine Learning
In this work, we explore applying a link prediction approach to tag recommendation in broad folksonomies. The original idea of the approach is to mine the dynamic of the tagging activity in order to compute the most suitable tag for a given user and a given resource. The tagging history of each user is modeled by a temporal sequence of bipartite graphs linking tags to resources. Given a target ...
متن کاملA Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
متن کامل